Efficient solution of a wave equation with fractional-order dissipative terms

نویسندگان

  • H. Haddar
  • J.-R. Li
  • D. Matignon
چکیده

We consider a wave equation with fractional-order dissipative terms modeling viscothermal losses on the lateral walls of a duct, namely theWebster–Lokshin model. Diffusive representations of fractional derivatives are used, first to prove existence and uniqueness results, then to design a numerical scheme which avoids the storage of the entire history of past data. Two schemes are proposed depending on the choice of a quadrature rule in the Laplace domain. The first one mimics the continuous energy balance but suffers from a loss of accuracy in long time simulation. The second one provides uniform control of the accuracy. However, even though the latter is more efficient and numerically stable under the standard CFL condition, no discrete energy balance has been yet found for it. Numerical results of comparisons with a closed-form solution are provided. © 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model

Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...

متن کامل

The Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order

Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...

متن کامل

A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative

The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...

متن کامل

Numerical approach for solving a class of nonlinear fractional differential equation

‎It is commonly accepted that fractional differential equations play‎ ‎an important role in the explanation of many physical phenomena‎. ‎For‎ ‎this reason we need a reliable and efficient technique for the‎ ‎solution of fractional differential equations‎. ‎This paper deals with‎ ‎the numerical solution of a class of fractional differential‎ ‎equation‎. ‎The fractional derivatives are described...

متن کامل

On the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative

The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 234  شماره 

صفحات  -

تاریخ انتشار 2010